

WebSphere Process Server V6.1
Business Process Choreographer

Programming Model

Rolf Bäurle, Michael Friess, Dieter König, Gerhard Pfau, Stefan Rüttinger

IBM Development Lab Böblingen, Germany

May 2008

© IBM Corporation, 2006, 2008

2

Table of Contents

WebSphere Process Server V6.1 Business Process Choreographer Programming Model 1
1 Introduction .. 5
2 Service Component Architecture.. 5

2.1 Components ... 5
2.2 Imports and Exports ... 6

3 Business Process Programming Model... 7
3.1 The Process .. 8
3.2 Partner Links.. 10
3.3 Variables .. 10
3.4 Correlation Sets.. 11
3.5 Activities .. 11
3.6 Fault Handling ... 17
3.7 Compensation Handling... 17
3.8 Event Handling .. 17

4 Human Task Programming Model ... 18
4.1 Task.. 18
4.2 Task Event Handlers .. 23
4.3 Substitution .. 24
4.4 Post-processing People Query Results... 24
4.5 Application Component ... 25

5 Interfaces to Business Processes and Tasks.. 25
5.1 Service Component Architecture Client Interfaces.. 25
5.2 Generic API for Processes ... 26
5.3 Generic API for Tasks.. 27
5.4 Generic Web Service Interface for Processes and Tasks 28
5.5 Generic JMS Message Interface for Processes .. 29
5.6 Queries ... 30
5.7 Administrative Interface to Processes.. 33
5.8 Administrative Interface to Tasks .. 34
5.9 Java Snippet Programming Model ... 34

3

5.10 Business Process Choreographer Explorer Components for JavaServer Faces 36
5.11 Monitoring and Auditing ... 37

6 Business Process Development Tools .. 38
6.1 Assembly Diagram... 38
6.2 Business Process Editor ... 39
6.3 Human Task Editor .. 40
6.4 Integration Test Client ... 41
6.5 Debugging Processes ... 42

Appendix A SCA Qualifiers .. 42
Appendix B References ... 44
Appendix C Trademarks.. 46

4

Abstract

As part of WebSphere® Process Server, V6.1, Business Process Choreographer provides
support for business processes and human tasks. It offers a way to model your business

process based on the WS-BPEL specification, and to model interactions that involve
humans, such as human-to-human, human-to-machine, and machine-to-human interactions.

Both business processes and human tasks are exposed as services in a Service Oriented
Architecture. This Whitepaper introduces the programming model for processes and tasks

provided by Business Process Choreographer.

5

1 Introduction
As part of WebSphere Process Server, Version 6.1, Business Process Choreographer (BPC)
provides the support for two types of service components, business processes and human
tasks. This Whitepaper provides an overview of the programming model provided for
processes and tasks.

2 Service Component Architecture
Service Component Architecture (SCA) is a concept for modeling business services that
consume or produce business data. The unified applications programming model for
accessing and manipulating business data is provided by Service Data Objects (SDO).

SCA provides a model for implementing service components. It introduces the notion of an
SCA module containing components as well as imports and exports for interactions with
entities outside of the SCA module. Business processes and human tasks are represented as
SCA components.

The definition of a component, import, or export is provided as an XML document in
Service Component Definition Language (SCDL) format.

The key concept introduced by SDO is the data object. It holds a set of named properties
containing either a value of simple data type or a reference to another data object. Data
objects provide an interface for manipulating these properties.

2.1 Components
SCA components consist of interfaces, references, and an implementation. Interfaces are
WSDL port types or Java™ interfaces and they describe the operations a component
provides. References are also typed by WSDL port types or Java interfaces and they describe
the services a component is dependent on; references are wired to interfaces provided by
other components or imports. Different component implementation types are provided such
as Java objects, business processes, or human tasks.

6

Figure 1: Service Component Architecture – Wired Components

SCA components with a ProcessImplementation implementation type represent business
processes. These process components implement one or more SCA interfaces, specified
using WSDL port types1. From a process definition point of view, these port types define the
Web service operations exposed by a process. Furthermore, process components have SCA
references, again, typed with WSDL port types. These port types define the Web service
operations consumed by a process. The implementation section of the process component
points to the BPEL file containing the process definition.

SCA components with a TaskImplementation implementation type represent human tasks.
To-do tasks have a single SCA interface and no references. Conversely, invocation tasks
have a single SCA reference and no interfaces. Finally, collaboration tasks have neither
interfaces nor references. These tasks are used only via BPC API services and not via an
SCA client.

2.2 Imports and Exports
SCA imports and exports represent the external access points from and to an SCA module.
Imports allow the import of external services that are not part of an SCA module. These
imported services can be accessed by clients within the SCA module like any other SCA
component. Exports allow the export of SCA services to clients that are not part of the SCA
module containing the exported SCA service.

1 Note in particular that the SCA interfaces referenced by processes and tasks must be WSDL port
types, that is, Java interfaces are not yet supported.

7

Figure 2: Service Component Architecture – Standalone Reference and Import

Figure 3: Service Component Architecture – Export and Exported Component

3 Business Process Programming Model
Business processes are defined using the Web Services Business Process Execution
Language (WS-BPEL or BPEL). BPEL is a model and a grammar for describing the
behavior of a business process based on interactions between the process and its partners.
The interaction with each partner occurs through Web Service interfaces; therefore, BPEL is
built on top of WSDL and XML schemas.

The following sections describe elements and attributes of a business process definition (see
also [BPEL4WS 1.1], [WS-BPEL 2.0]), including standard modeling constructs and
language extensions for additional features, such as user interactions, inline Java code, or
quality of service (QoS) attributes.

8

Figure 4: BPEL Process

WebSphere Integration Developer validates the process model using an extended XML
schema for the syntax and a comprehensive set of rules for semantic constraints defined by
the BPEL specification.

3.1 The Process

 A business process definition is specified as an XML document that begins with the
process root element. It contains process-global attributes and elements that either carry
operational semantics or are descriptive in nature.

The major building blocks of business processes modeled in BPEL are nested scopes
containing relationships to external partners, declarations for process data, handlers for

9

various purposes and, most importantly, the activities to be executed. The outermost scope is
the process definition itself. Table 1 lists BPEL attributes and extension attributes of the
process element.

Attribute Description

name

targetNamespace

Identifies the process definition.

queryLanguage XML query language used for selecting nodes in assignments;
default "http://www.w3.org/TR/1999/REC-xpath-19991116" for
XPath 1.0

expressionLanguage XML expression language used in the process; default
"http://www.w3.org/TR/1999/REC-xpath-19991116" for XPath
1.0

suppressJoinFailure Determines whether the joinFailure fault is suppressed for all
activities in the process. The default for this attribute is "no" at
the process level (see Parallel Activities later in this document,
for more information about join failures). When this attribute is
not specified for an activity, it inherits its value from its closest
enclosing activity or from the process if this attribute is not
specified in any enclosing activity.

bpc:displayName Readable name for the process.

bpc:id Unique identifier used, for example, for process debugging.

bpc:validFrom Specifies the time when the process model becomes valid, that
is, the point in time from which process instances can be created.

bpc:executionMode Specifies whether a process is executed as a long-running
process or as a microflow (the default is "longRunning").

bpc:autonomy Specifies whether a process can become a subprocess of another
process; by default, it is treated as an independent peer process.

bpc:compensationSphere Determines the compensation behavior for microflows; it has the
values "supports" (the default) and "required".

bpc:businessRelevant Indicates whether the details on the execution of this process is
stored as a part of the audit trail in the runtime environment (by
default yes).

bpc:autoDelete Determines whether a long-running process instance is kept
around even when the process instance has reached a final state
automatically deleted upon completion, or automatically deleted
upon successful completion (the default).

10

Attribute Description

bpc:ignoreMissingData Determines whether the selectionFailure fault is suppressed in
assignments encountering absent optional data in a from-spec.

Table 1: Attributes of the BPEL process root element

A process can also contain descriptive elements:

• bpc:description for a short description that can be queried at runtime

• bpc:documentation for a long explanation of the process

• bpc:annotation used for comments provided by the process modeler.

The import element is used to explicitly indicate a dependency on an external XML schema
or WSDL definitions, or inline task definitions. The element bpc:customProperty is used
to add additional attributes to processes beyond those provided by BPEL. The value of a
custom property can be set in the process model or at runtime, for example, by Java snippets.
Java packages needed by Java snippets can be globally specified using the
bpc:javaGlobals element. The modeler can define administration tasks for the process
using bpc:adminTask and for an invoke activity using bpc:activityAdminTask.

The following sections introduce the remaining elements of a process definition – partner
links, variables, correlation sets, fault, compensation and event handlers, and the activities
that describe the dynamic behavior of the process.

3.2 Partner Links

 A BPEL process interacts with other partners through Web services, along a set of
partner links. Partner links are instances of typed connectors which specify the port types the
process offers to and requires from the partner at the other end of the partner link.

The partnerLinks section defines the different parties that interact with the business
process. Each partnerLink is characterized by a partner link type and a role name. This
information identifies the functionality that must be provided by the business process and by
the partner service.

For process-to-process interactions, you can annotate a partner link using the
processResolver element to specify the process template name of the process that offers
the service to be invoked. In this case, the currently valid version of that process template is
determined at runtime (this is also referred to as late binding of subprocesses).

3.3 Variables

 Variables hold the data that constitutes the state of a business process. Data in BPEL is
written to, and read from, typed variables. The values of these variables are either messages
exchanged with the process or intermediate data that is private to the process. Variables are

11

typed using WSDL message types, XML schema types, or XML schema elements. XPath is
the default language for manipulating and querying variables.

Variables are declared by specifying a name, and a WSDL message type, an XML schema
type, or an XML schema element. The declarations are visible either in the complete process
or in scopes, which are introduced later.

Variables may also be defined with unconstrained content, that is, with xsd:anyType or
xsd:anySimpleType. In addition, complex types used for variable definitions (directly or
via and XML schema element definition) may also contain the element wildcard xsd:any.
Open content data may be assigned from and to variables defined with concrete data types
and used in interfaces mapped from and to variables. Restrictions applying to such explicit or
implicit assignments are described in the section about assign activities below.

In addition, variables can have the bpc:id and bpc:businessRelevant attributes. These
attributes uniquely identify the variable and control the generation of Common Base Events
and audit trail records during process execution.

A predefined service-ref data type is defined by BPEL; it is used as a wrapper for
endpoint references (EPRs, see [WS-Addressing]). BPC also provides a
bpc:StandardFaultType data type which is used for data associated with BPEL standard
faults.

3.4 Correlation Sets

 If a process offers multiple Web service operations, then subsequent request messages
must be routed to the correct instance. BPEL defines a correlation mechanism to route
messages using parts of the application data, that is, data in input and output messages of
Web services. This correlation mechanism comprises properties and correlation sets.
Properties are defined in WSDL and mapped (aliased) to parts of several of the WSDL
messages that the process uses. Correlation sets are defined by specifying their name and a
group of properties.

You can attach zero or more correlation sets to the interaction activities using the
correlations element. This element has a flag that determines whether the activity will
initiate the correlation set’s data.

3.5 Activities
Activities are the most important elements of a process definition and describe the business
logic of the process. BPEL offers different types of basic and structured activities that are
described in the following sections. All activities can carry the BPEL standard attributes
name and suppressJoinFailure, and the extension attributes id, displayName,
businessRelevant, transactionalBehavior, continueOnError, fault, and
compensable. Activities can also be the source or target of a link (see Parallel Activities
later in this document). For this purpose, the sources and targets standard elements
contain the specification of the corresponding links.

12

Receive

 The receive activity is one of the activities needed for providing Web services to
partners. It specifies the partnerLink and the WSDL portType and operation for the
Web service. The specified variable holds the request data received from the caller of the
Web service. The receive activity has one or more associated reply activities if it is used to
provide a WSDL request-response operations.

When a Web service request is received, the request message can either lead to the creation
of a new process instance or be consumed by an existing process instance. The
createInstance attribute of the receive activity determines whether a new process
instance can be created.

Reply

 The reply activity, typically used in conjunction with the receive activity to implement
a WSDL request-response operation, provides the means to return data to the caller of a Web
service. It specifies the partnerLink and the WSDL portType and operation for the
Web service. The specified variable holds the response data or fault data returned to the
caller of the Web service. If fault data is returned, the faultName identifies the
corresponding WSDL fault.

Invoke

 The invoke activity is used to call a Web service provided by a partner. It specifies the
partnerLink and the WSDL portType and operation for the Web service to be
invoked. For WSDL request-response operations, an inputVariable and an
outputVariable are specified. These variables hold the data passed to, and received from,
the Web service. For WSDL one-way operations, only the inputVariable is needed.

The input and output extension elements allow the mapping of WSDL message contents
to multiple BPEL variables. This is convenient when the Web service interaction is
compliant with the document-literal wrapped style, which is the default for interactions that
are created with WebSphere Integration Developer, V6.1. Each parameter element that is
nested in the document is assigned to an individual BPEL variable. This approach avoids the
need for variables that are defined with the wrapper document type or even the WSDL
message, and it allows you to use the relevant business object types directly.

When you specify correlation sets on the invoke activity, you must also use the pattern
attribute to specify whether the correlation set applies to the request ("out") or the response
("in").

The timeout extension is used to tell BPC when an activity is supposed to be finished,
which is important for asynchronous or long-running interactions. Administration tasks can
be associated with activities using the adminTask extension.

You can specify fault handlers, a compensation handler, or both on the invoke activity as a
shorthand notation for a scope activity that contains the handlers and the invoke activity. For

13

more information on handlers, see sections 3.6 Fault Handling, and 3.7 Compensation
Handling.

The two most important extensions, task and script, allow you to “invoke” a user
interaction or run inline Java code instead of calling a Web service. These variants of the
invoke activity are discussed in the Human Task and Snippet sections.

Human Task

 The human task activity (task extension of the BPEL invoke activity) is a basic
activity which is “implemented” by an action performed by a human being. To define the
implementation of an activity involving people, tasks are used. For more information on
tasks, see section 4 Human Task Programming Model. You can also refer to [BPEL4People],
which explains basic concepts of user interactions.

Snippet

 The snippet activity (script extension of the BPEL invoke activity) allows you to
specify Java code as part of the activity implementation. This Java code has access to the
enclosing BPEL environment, for instance, it can work with BPEL variables, partner links,
correlation sets, and custom properties (see section 5.6 Java Snippet Programming Model for
more information). For optimization purposes, you can specify a list of variables that are
accessed read-only.

Assign

 The assign activity provides the means for basic data manipulation. Expressions can be
used to perform simple computation. An assign activity also provides the means to map
service endpoint references to or from partner links. One or more copy elements describe
how the data is assigned, and contain from and to specifications of different types. You can
specify a variable containing a WSDL message, optionally a selection of a WSDL part, or a
variable containing an XML document. Alternatively, the from-spec or to-spec can be a
partner link and a specification of its role; note however that you cannot modify the
“myRole” endpoint reference of a partner link. Additional variants are a variable property, an
expression, or a literal value (from-spec only).

For assignments that are not related to partner links, it is possible to ignore the absence of
optional data instead of raising a selectionFailure standard fault. This is achieved by
setting the bpc:ignoreMissingData process attribute to "yes".

If variables defined with unconstrained content are referenced in assignments then a number
of restrictions apply. It is not possible to create a data element in a place defined with an
element wildcard xsd:any. Moreover, assignments from variables with unconstrained
content to variables with concrete data types must “fit”, that is, the runtime instance of the
XML data must match the data type of the variable in the to-spec of an assignment.

14

Choice

 The choice activity (BPEL switch activity) allows you to select exactly one branch of
an activity from a given set of choices. For each choice, a condition determines whether a
branch is taken. As with other expressions, you can use XPath expressions, inline Java code,
or predefined built-in expressions. Only the first branch with a true condition is executed. If
no condition evaluates to true, then a default choice can be specified using the otherwise
branch.

Receive Choice

 The receive choice activity (BPEL pick activity) allows you to block and wait for a
suitable message to arrive or for a time-out alarm to go off. The pick activity can contain
onMessage elements specifying the partnerLink and the WSDL portType and
operation for the Web service to be provided, and a variable which holds the request
data received from the caller of the Web service. You can also specify an onAlarm element
for a time-out alarm which is processed at a specified time or after a given time interval.
Duration-valued or deadline-valued time-out expressions can be specified in XPath or Java.

Like the receive activity, the pick activity carries a createInstance attribute which
determines whether a new process instance can be created upon the receipt of a Web service
request message.

While Loop

 The while loop activity (BPEL while activity) allows you to specify that an activity is
executed repeatedly as long as a given condition evaluates to true.

Sequence

 The sequence activity is used to define a collection of activities which is performed
sequentially in lexical order.

Parallel Activity

 The parallel activity (BPEL flow activity) provides for concurrency and
synchronization of nested activities. It contains the links for specifying the (partial)
execution order of contained activities. To define such a constraint, a link is referred to in the
source element of one activity and the target element in another activity.

If the source activity and the target activity are nested in different enclosing activities, then
the link crosses the boundary of an enclosing structured activity. In this case, several
restrictions apply; links must not cross the boundary of a while activity, an event handler or a
compensation handler, and they must not enter a fault handler.

A link can contain a specification of a transition condition, which is evaluated after
completion of the source activity, to determine whether the link status will be positive or

15

negative. The target activity contains a join condition, which can refer to the status of one or
more inbound links. The join condition is evaluated when the status of all the inbound links
is determined. If the result is true then the target activity is executed. If the result is false, a
joinFailure fault is thrown or dead-path elimination occurs, depending on the setting of
the suppressJoinFailure attribute. Dead-path elimination causes the target activity to be
skipped and the status of all outgoing links to be set to negative.

You define transition conditions and join conditions using an expressionLanguage, which is
XPath (the default), Java, or built-in.

Cyclic Flow

 The cyclic flow activity (flow extension of the BPEL extensionActivity), similar
to the parallel activity discussed above, provides for modeling the execution order of nested
activities. There are two differences: parallel execution is disallowed but the links for
specifying the execution order of contained activities may create a cycle in the control flow.

More specifically, for control links, consider the following different execution semantics.

• Split/merge semantics of the cyclic flow activity: For an activity with multiple
outgoing links, the first link that evaluates to true is navigated (split). All other links
are ignored. An activity is started as soon as one incoming link is ready (merge).
Note that there is always just one incoming link that becomes active for an activity
because the split/merge semantics does not allow parallelism.

• Fork/join semantics of the standard BPEL flow activity: In this model, links are
used to synchronize. All outgoing links of an activity are evaluated, and all are
navigated (fork). An activity with multiple incoming links waits until all links are
evaluated before the execution of the activity starts (join).

ForEach

 The forEach activity is used for executing its nested activities a specified number of
times, either serially or in parallel. The parallel attribute determines whether it is
executed as a serial loop (if set to "no") or all branches are executed in parallel (if set to
"yes"). The counterName attribute specifies the name of a counter variable implicitly
defined in the nested scope. The startCounterValue and finalCounterValue
attributes specify the start and end value for the forEach iterations, respectively. In each
iteration, the counter variable has a value between the startCounterValue and
finalCounterValue, incremented by one for each iteration.

The optional completionCondition element specifies under what circumstances the
activity may complete prematurely. The contained branches element determines how many
forEach branches must complete before the forEach activity is itself considered
completed. All remaining active branches are terminated. If the attribute
countCompletedBranchesOnly is set to "yes" then only the number of successfully
completed branches is compared with the number specified in the branches element. If upon

16

completion of a branch it can be determined that the completion condition can never be true,
the completionConditionFailure fault is thrown.

Throw

 The throw activity is used for explicitly raising a fault (see 3.6 Fault Handling). You
can associate fault data with the fault by specifying a fault variable that contains the data.

Rethrow

 The rethrow activity can be used inside of a fault handler to delegate the handling of a
fault to an enclosing scope (see 3.6 Fault Handling). The fault is re-thrown exactly as it was
caught by the fault handler, that is, any modifications of the associated fault data are ignored.

Compensate

 The compensate activity is used for explicitly invoking a compensation handler of one
or more directly nested scopes (see 3.7 Compensation Handling). Either the compensation
handler of a specified scope or, if the scope name is omitted, the compensation handler of all
nested scopes is executed.

Terminate

 The terminate activity is used to terminate immediately the behavior of a business
process instance within which the terminate activity is performed. All running activities
are terminated without any fault or compensation handling.

Wait

 The wait activity is used to wait for a specified time period or until a certain point in
time is reached. Again, duration-valued or deadline-valued time-out expressions can be
specified in XPath or Java.

Empty Action

 The empty action (BPEL empty activity) is used to specify that no action is to be taken,
that is, this is the BPEL rendering of a no-op activity. This activity is used for fault handlers
that consume a fault without acting on it. Other use cases for the empty activity include
synchronization points in a flow, or placeholders for activities that are to be added later.

Scope

 A scope allows you to define local variables, fault handlers, event handlers, and a
compensation handler (handlers are described in the following sections). Its nested activity
has access to the definitions of all of the enclosing scopes, including the outermost scope

17

which is the process root element itself. The visibility rules known from programming
languages, such as Java apply.

3.6 Fault Handling

 Faults can be returned from Web service invocations (invoke), explicitly raised in the
process (throw), returned from a process (reply with fault), or recognized by the runtime
infrastructure (standard faults). Fault handlers are specified on the process or scope level.
When faults are caught by a fault handler, the exceptional situation can be dealt with by
regular activities defined in the fault handler, by invoking compensation handlers using the
compensate activity, or by delegating to a fault handler of an enclosing scope (rethrow or
throw).

A scope can have one or more fault handlers for specific faults (catch) or a generic
catchAll fault handler. If a fault handler is not specified, a default fault handler applies.
This fault handler contains only the compensate activity that caused the compensation
handlers of the directly nested scopes to be executed.

Standard Faults
BPEL defines a number of standard faults that might be encountered during the execution of
a process. In many cases, these faults are caused by modeling errors, for example,
correlationViolation or selectionFailure. Business Process Choreographer
recognizes additional error situations, resulting in the faults: bpc:timeout,
bpc:serviceTerminated, or bpc:runtimeFailure.

3.7 Compensation Handling

 A scope can have an explicit compensationHandler or, if none is specified, a default
compensation handler applies which contains only a compensate activity. The
compensation handler can be considered to be a continuation of the scope’s execution; it
reverses the effects of activities as part of the “regular” scope behavior when a failure occurs.

For microflows, you can use the undo construct for specifying undo logic as an alternative to
a compensationHandler. This construct provides a shorthand notation for a compensation
handler that invokes a single service as its undo logic and it takes a snapshot of the input for
the undo operation on successful completion of invoke or scope. The undo element
provides a construct that can express the compensation practice known in WebSphere
Integrated Server, WebSphere Application Server Extended Edition V5.0, and WebSphere
Business Integration Server Foundation V5.1.

3.8 Event Handling

 A scope can have event handlers which deal with message events or timer events. Timer
events are the same onAlarm elements as in pick activities (see the section on receive
choice activities). However, in event handlers, these events can be processed multiple times.

18

Message events defined by the onEvent element contain activities that are executed
concurrently to the other activities of a scope. They also represent Web services provided by
a process, and refer to a partnerLink and the WSDL portType and operation for the
Web service, and a variable which holds the request data received from the caller of the
Web service. Event handlers are active as long as the enclosing scope is executed. Multiple
event handler instances are processed concurrently.

4 Human Task Programming Model
A human task is a component that involves a person interacting with a service. The Task
Execution Language (TEL) is used to define a task. TEL defines a model and a grammar for
tasks. The following sections describe the elements and attributes of a task definition.

4.1 Task

 Tasks have a set of attributes and related elements. Table 2 explains the task attributes.
Subsequent sections cover custom properties, localized descriptions, people assignment
criteria, escalations, and UI settings for tasks.

Attribute Description

allowClaimWhenSuspended Determines if a task that has been suspended can be
claimed; by default this is not the case.

applicationDefaultsComponentName Defines the name of the application component that
specifies defaults for this task.

autoDeletionMode States whether a task is automatically deleted when
it reaches an end execution state. Possible values
are:

• ON_COMPLETION: The task is deleted
when it reaches any end state.

• ON_SUCCESSFUL_COMPLETION: The
task instance is deleted when it reaches the
finished end state (STATE_FINISHED).

Please note that the actual point in time when auto
deletion occurs is depending on the settings in the
element durationUntilDeleted. If
durationUntilDeleted is set to
"DURATION_INFINITE" then no auto deletion
occurs, irrespective of what has been specified for
the autoDeletionMode.

containmentContextComponentName Defines the name of the application component that
contains this task. If a value is specified, the life

19

Attribute Description
cycle of this task is coupled to a specific application
component.

autoClaim Determines whether a task for which the people
resolution resolves to a single person is
automatically put into the claimed state

businessRelevance Identifies tasks that are relevant to the business thus
allowing you to specifically query for these tasks.

contextAuthorizationForOwner Defines access rights for a task to its surrounding
context. By default, this attribute is set to NONE. If
you set the value to READER, the task owner gets
read access to the surrounding context.

defaultLocale Specifies the default locale of the task. Use this
property to specify the locale for the display name,
description, and documentation that is specified as
part of the task.

durationUntilDeleted Defines how long a task that has ended is kept in
the system before it is deleted. By default, this
attribute is set to “0”, and the task is deleted when it
ends. You can set the attribute to infinity so that the
task is never deleted automatically. If you set the
duration to a specific value, then task deletion is
delayed by the specified amount of time; the value
is interpreted as a duration string of the default
WebSphere calendar, or of the calendar specified by
The calendarJNDIName and calendarName
properties of the task if set.

durationUntilDue Used to calculate the due date of a task. The value
of this attribute is interpreted as a duration string of
the default WebSphere calendar, or of the calendar
specified by the calendarJNDIName and
calendarName properties of the task if set.

durationUntilExpires Defines how long a task is allowed to be active
before it is moved to the expired state. By default,
this attribute is set to infinity so that the task never
expires. You can explicitly set the expiration
duration to let the task expire. The value of this
attribute is interpreted as a duration string of the
default WebSphere calendar, or of the calendar
specified by the calendarJNDIName and
calendarName properties of the task if set.

20

Attribute Description

calendarJNDIName

calendarName

WebSphere calendar used to specify durations. You
can set either both, or neither of these attributes. If
these attributes are not set, the default WebSphere
calendar is used.

jndiNameStaffPluginProvider Determines on a per task basis which people plug-in
provider is used to interpret people assignments.
Because there is a global definition of the people
directory provider at runtime, setting this property
is usually not required.

eventHandlerName Defines the name of the event handler used for
escalation notifications and API events.

kind Specifies if the task is an invocation task, a to-do
task, a collaboration task, or an administration task.
Invocation tasks are tasks used by humans to invoke
services. To-do tasks are used by services like
business processes to assign to-dos to a person or
group of people. Collaboration tasks are used by
humans to schedule work for other people.
Administration tasks are used to perform
administrative operations on business processes.

name

targetNamespace

Identifies the task definition.

priority / priorityDefinition Defines the priority of a task; the default value of
priority is 5; the highest priority is 0.

supportsSubTask Allows that subtasks are created for this task.

supportsFollowOnTask Allows that follow-on tasks are created for this task.

supportsDelegation Defines whether work items related to a task can be
transferred to other people; by default, this is the
case.

type Categorizes tasks according to the business needs of
a customer. The type property can be used to filter
queries for tasks of a certain type.

validFrom Defines from when the runtime should allow
instantiating tasks for a certain task definition. If a
value is not specified, then validFrom is set to the
current time during deployment and tasks can be
instantiated immediately. You can achieve basic
versioning of tasks by defining tasks with the same

21

Attribute Description
name and targetNameSpace, but different values for
validFrom.

Table 2: Attributes of a Human Task Root Element

Custom Properties
Tasks can also have any number of custom properties. Custom properties are key-value
pairs; key and value are both strings. You can use custom properties to specify customer-
specific information for a task. This information can be used at runtime to filter for specific
criteria. For example, a company might define a custom property named “business unit”,
which is assigned the value “accounting”, “sales”, or “HR”, depending on the business unit
the task belongs to. You can use the information in the “business unit” custom property at
runtime to filter task lists for people in each of the business units.

Localized Descriptions
Tasks provide a way to define a display name, a description, and documentation for a task.
The task definition allows you to specify one display name per locale, thus providing
multilingual support. The same is true for description and documentation.

Work Items
While system administrators of the Process Container or the Human Task Container have
universal rights on business processes and human tasks, ordinary business users can only see
things they have the appropriate rights for. For non-system administrators authorization is
ensured by checking if they have a suitable work item. A work item represents the relation
between an object, an assignment reason and a user or group, as outlined in the picture
below:

Examples for an object are a human task, an escalation, a business process, or an activity.
Examples for an assignment reason are potential owner, owner, reader, or starter.
Assignment reason corresponds to what BPEL4People [BPEL4People] and WS-HumanTask
[WS-HumanTask] call logical people group. User or group represents the respective entity in

Assignment
Reason

Object User or
Group Work

Item

22

a people directory. If a person (a user) or a group have a work item for an object then that
means that they have the “authority” to perform specific actions on that object, as defined for
the corresponding assignment reason. Work items that involve a group of people are also
called group work items.

Please note that usually objects (that is, human tasks, escalations, etc.) appear on lists in the
user interface, not the work items themselves.

People Assignment
People are assigned to human tasks using people assignment criteria, formerly known as
staff settings. They specify who is to do what with a certain task. From a programming
model perspective, people assignment criteria are an element of the task. At run-time work
items are created for people assigned to human tasks.

People assignment criteria define who should act on a human task in the role of an
administrator, editor, potential instance creator, potential owner, potential starter, or reader

People assignment is defined using people assignment criteria that have a name and a set of
parameters. The number of parameters depends on the particular people assignment
criterion. Not all people assignment criteria are supported for all people directories because
not all people directories offer the same functional richness. For a detailed description of the
different people assignment criterion and their parameters, refer to the section “Predefined
people assignment criteria” in the WebSphere Process Server, Version 6.1 information center
(see [WPS Info Center]).

User Interface

 You can specify user interface settings, formerly known as client settings for human
tasks. User interfaces are used to render the task input message or result on a certain client
user interface. By default, user interface definitions for Business Process Choreographer
Explorer, for WebSphere Portal, and since V6.1 now also for Lotus Forms are supported:

Please note that other clients can also be supported. The task definition has an extensibility
mechanism that allows you to specify custom-client settings, consisting of key-value pairs,
for these clients.

23

Escalations

Escalations provide a way to specify what should happen if a
task is not progressing as expected. A task can have one or more chains of escalations.
Escalation chains have one of the following activation states: ready, claimed, or waiting-for-
subtask. If the task reaches a certain state, the first escalation in all of the escalation chains
with this state set as the activation state is activated.

Like tasks, escalations have localized descriptions, custom properties, and people assignment
criteria to define who receives an escalation. In addition, escalations have the following
attributes:

• name identifies the escalation definition.

• atLeastExpectedState and durationUntilEscalation define the basic
escalation behavior of the escalation. durationUntilEscalation specifies the
time that occurs after an escalation has been activated before the escalation fires. If
in the meantime the task has progressed as expected, then it will have a state that is
at least atLeastExpectedState. If this is the case, the escalation becomes
superfluous. The escalation fires if this is not the case.

• escalationAction defines the action that occurs when an escalation fires. This
action can be creating a work item, sending an e-mail, or triggering an event on a
registered task notification event handler.

• autoRepeatDuration allows you to specify the behavior of recurring escalations.
If this attribute is set, the escalation is repeated continuously after the specified
duration until the escalation becomes superfluous.

• increasePriority defines if the priority of a task should be increased on
escalation. Depending on the value of increasePriority, the priority of the task
is not increased, increased once, or increased with every repetition of the escalation.
The latter applies only to tasks that have the autoRepeatDuration attribute set.
Note that because zero is the highest priority, to increase the priority, you must
decrease the value of the increasePriority attribute.

4.2 Task Event Handlers
Task notification event handlers are used to receive escalation events and API events. The
Human Task Manager offers two interfaces that an application can implement:

• com.ibm.task.spi.NotificationEventHandlerPlugin

• com.ibm.task.spi.APIEventHandlerPlugin3

For each of these interfaces a default implementation class is provided:

• com.ibm.task.spi.NotificationEventHandler

• com.ibm.task.spi.APIEventHandler

24

When implementing your event handler you may chose to subclass the default
implementation, and to just override the methods which you are interested in.

Human Task Manager also provides a mechanism to register the plug-ins with the runtime:

The plug-ins are visible under a given name. You use this name to specify the
eventHandlerName property of a task introduced before.

4.3 Substitution
Participant substitution allows people to temporarily delegate work to their substitutes while
they are absent. To accomplish that, Human Task Manager allows people to specify a list of
substitutes. Furthermore it allows people to indicate if they are present (in which case no
substitution occurs), and when they are absent. Similar to WebSphere MQSeries Workflow,
several substitution policies exist:

• NoSubstitution – No substitution occurs

• SubstituteUserIfAbsent – If a person is absent, assign this person’s work item to the
first substitute that is present, excluding people marked as “removed users” (used to
ensure separation of duties). If no substitute is available, then the default people
assignments apply.

• SelectUserIfPresent – Use only non-absent users, that is, do not assign human task to
absent users. If no user is present, assign to the original user list.

Please note that substitution leverages schema extensions provided by the Virtual Member
Manager (VMM) people directory introduced with WebSphere Application Server 6.1.
VMM is also known as federated repositories as, among other things it has the capability to
federate across a multitude of different LDAP-based and other repositories. Due to its
dependency on VMM, substitution can only be used when VMM is configured as the people
directory.

4.4 Post-processing People Query Results
Human Task Manager allows to post-process people query results after people resolution has
been performed. The following plug-in interface is provided to enable people query post-
processing:

• com.ibm.task.spi. StaffQueryResultPostProcessorPlugin

One post-processor plug-in can be configured globally, per Human Task Manager. Post-
processing actions include the addition and removal of people and groups from the original
people query result. Post-processing can be used for a multitude of scenarios. For example
use it to hook-in custom code to do load balancing by removing those users from the people
query result who already have a high workload. You can also use post-processing to prefer
active users by assigning work only to people that are currently logged on, or to perform
advanced substitution by replacing people from the result set with their substitutes, based on
information external to Human Task Manager.

25

4.5 Application Component
Application components are a generic construct that you can use to define a task’s
containment context, specify defaults for a task, or define the parent context of a task at
runtime. Application components are created, managed, and destroyed using an
administrative interface. They don’t have a representation in the Task Execution Language
(TEL). While you usually will not have to deal with application components they may be
interesting in cases where you are working with ad-hoc tasks, and need to either specify
common defaults for these tasks, or want all tasks to be contained within a single
surrounding entity, which for example is beneficial when doing cleanup.

5 Interfaces to Business Processes and Tasks
WebSphere Process Server V6.1 provides multiple interfaces to business processes and
human tasks. From an external client perspective, you can use interfaces provided for service
component architecture components or generic BPC interfaces. Additional interfaces are
provided for Java code within business processes. Users of services provided by Business
Process Choreographer include:

• Integration developers (SCA programming model)

• Application developers (J2EE/Java programming model)

• Administrators (WebSphere administration model)

5.1 Service Component Architecture Client Interfaces
The Service Component Architecture (SCA) provides a common client interface for services
provided by SCA components, regardless of the component’s implementation, which may be
a BPEL process or human task. The services provided by a process component or task
component are described using WSDL port types.

The client uses the SCA service manager to locate a service, creates data objects exchanged
with the service, invokes methods on the service, and finally processes output or exceptions
returned from the service.

Clients can interact with services described by WSDL interfaces through the generic SCA
dynamic invocation interface (DII). An SCA metadata interface is provided to allow the
client to introspect the signature of the invoked service and the types of data objects
exchanged with the service.

Service Component Architecture Exports
You can export SCA components to allow remote SCA clients or non-SCA clients to invoke
the services provided. Non-SCA clients can be Web service applications, clients defined by
the J2EE Connector Architecture (JCA), or JMS clients. SCA Web service exports are
realized with the IBM Web Services infrastructure, and the services provided can be invoked
using SOAP bindings. SCA exports for JCA or JMS contain specifications of data bindings
that determine the wire format of the corresponding protocol.

26

5.2 Generic API for Processes
The generic API for processes allows you to develop applications that interact with BPEL
processes. It is implemented as an enterprise bean and offered in the following renderings:

• BusinessFlowManager provides a remote Enterprise JavaBeans (EJB) interface

• LocalBusinessFlowManager interface provides a local EJB interface

Both interfaces provide the same functionality, including methods for:

• Process templates – access installed process models

• Process instances – interact with process instances

• Process life cycle – control the life cycle of process instances

• Activities – control the life cycle of activities in a process

• Variables and custom properties – access to process data

The reference to the remote home interface for process applications is shown in the
following example:

<ejb-ref>
 <ejb-ref-name>ejb/BusinessFlowManagerHome</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>com.ibm.bpe.api.BusinessFlowManagerHome</home>
 <remote>com.ibm.bpe.api.BusinessFlowManager</remote>
</ejb-ref>

The following code snippet shows how to get started with the generic business process API:

// Obtain the default initial JNDI context
InitialContext initialContext = new InitialContext();

// Lookup the remote home interface of the BusinessFlowManager
Object result = initialContext.lookup(
 "java:comp/env/ejb/BusinessFlowManagerHome");

// Convert the lookup result to the proper type
BusinessFlowManagerHome processHome = (BusinessFlowManagerHome)
 javax.rmi.PortableRemoteObject.narrow(
 result,
 BusinessFlowManagerHome.class);

// Access the remote interface
BusinessFlowManager process = processHome.create();

// Prepare input data for the process ...
DataObject poMessage = ...;

// Do business ...

27

process.sendMessage("purchaseOrderProcess",
 "http://manufacturing.org/wsdl/purchase",
 "purchaseOrderPT",
 "sendPurchaseOrder",
 poMessage);

For more information on the generic API for processes, refer to the Javadoc for the
BusinessFlowManagerService or LocalBusinessFlowManagerService interfaces.

5.3 Generic API for Tasks
The generic API for tasks provides a way to work with any kind of task. It is also
implemented as an enterprise bean and offered in the following renderings:

• HumanTaskManager provides a remote EJB interface

• LocalHumanTaskManager provides a local EJB interface

• HumanTaskManagerDelegate provides an interface for clients that abstracts from
the use of local or remote interface use.

All three interfaces conceptually provide the same API functionality. The API allows you to
create and start tasks, to claim and un-claim tasks, and to complete or fail them.

The API allows you to perform ad-hoc queries for tasks and other related objects. This
capability can be used to obtain the list of tasks a person is to work on – their work list.
Besides executing ad-hoc queries the API allows administrators to define, store, execute, and
delete pre-defined queries. These predefined queries provide a convenient way for users to
perform queries that do appropriate filtering without having to specify all of the details each
time the query is run.

The API also allows you to get the input message, output message, and fault messages of a
task, and to set the output or fault messages. It provides for retrieving a task’s custom
properties, and to get information about who acts in a certain role on a particular task. For
administration purposes, the API provides functions to suspend, resume, restart, terminate,
and delete tasks. Finally, the API provides methods to dynamically change the assignment of
tasks to people.

The following code snippet shows how to get started with the generic API for tasks:

// Obtain the default initial JNDI context
InitialContext initialContext = new InitialContext();

// Lookup the remote home interface of the HumanTaskManager
Object result = initialContext.lookup(
 "java:comp/env/ejb/HumanTaskManagerHome");

// Convert the lookup result to the proper type
HumanTaskManagerHome htmHome = (HumanTaskManagerHome)
 javax.rmi.PortableRemoteObject.narrow(
 result,

28

 HumanTaskManagerHome.class);

// Access the remote interface
HumanTaskManager htm = htmHome.create();

// Do business ...
htm.claim(tkiid);

Since v6.1, Human Task Manager now also offers batch APIs that allow processing multiple
objects with a single API call. A scenario where this is particularly useful is for example the
transfer of a large number of human tasks from one person to another person.

For more information on the generic API for tasks, refer to the Javadoc for the
HumanTaskManager, LocalHumanTaskManager, or HumanTaskManagerDelegate
interfaces.

5.4 Generic Web Service Interface for Processes and Tasks
Generic Web service interfaces are provided for both Business Flow Manager and Human
Task Manager.

By design, the interfaces have a simple structure in order to be usable in as many client
environments as possible. For example, operation overloading is avoided, and only a small
number of data types with a flat hierarchy and without derived data types are exposed. In
general, the exposed interfaces are designed along the existing EJB API services, however,
in case of conflicts, the design principles above took precedence. Web services client
environments include, but are not limited to, .NET and Java Web service clients.

All Web service operations are using the document-literal wrapped style, that is, their input
and output messages (if present) contain exactly one part, the parts refer to an element named
after the operation, those elements (wrappers) are of a complex type defined using the
xsd:sequence compositor and containing only elements declarations. In addition, all
operations are exposed as request-response operations. For existing API methods with a void
return type, the exposed operation returns an empty response wrapper.

The Web service operations are provided as secure Web services. Either a UserNameToken
or an LTPAToken must be transmitted in every request.

All Web service operations run in a transaction. If no transaction context is transmitted in a
request then a new transaction is created.

Both BFM and HTM provide a "callAsync" operation that allows for calling long-running
processes or human tasks exposing a request-response operation in an asynchronous fashion.
This operation is a one-way operation that delivers the input message and starts the process
or task instance. When the process or task has completed the execution of the its request-
response operation, the runtime invokes a one-way operation provided by a callback service
to deliver the output or fault data to the client. This callback service must be implemented by
the calling client. Moreover, the client has to create a WS-Addressing Endpoint Reference

29

pointing to its callback address, and present this EPR as a parameter on the callAsync
operation.

5.5 Generic JMS Message Interface for Processes
A generic JMS message interface is provided for the Business Flow Manager. It references
the same WSDL port type as the Web service interface of BFM introduced in the previous
section. It allows custom JMS clients to perform interactions such as query processes, call a
microflow or a long-running process (and asynchronously receive the response), send a
message to waiting activity, retrieve a response from a long-running process, repair a
business process, delete process instances, suspend or resume process instances.

The following considerations describe aspects that are specific for JMS message interactions.

The JMS message header must contain the following JMS header fields for each request
message:

• TargetFunctionName – the name of the WSDL operation, e.g.
"queryProcessTemplates"

Each response message contains the following JMS header fields:

• IsBusinessException – "false" for WSDL output messages and "true" for
WSDL fault messages

The JMS message body is a TextMessage containing an XML document representing the
doc/lit-wrapper element of the operation.

A simple example of a valid request message body is:
<bfmsrv:queryProcessTemplates
xmlns:bfmsrv="http://www.ibm.com/xmlns/prod/websphere/business-
process/services/6.0"/>

An example of a possible returned response message body is
<bfmsrv:queryProcessTemplatesResponse
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:bfmsrv="http://www.ibm.com/xmlns/prod/websphere/business-
process/services/6.0"
xmlns:bfmtyp="http://www.ibm.com/xmlns/prod/websphere/business-
process/types/6.0"
xmlns:bpctyp="http://www.ibm.com/xmlns/prod/websphere/bpctyp-
common/types/6.0">
 <bfmtyp:ProcessTemplate xsi:type="bfmtyp:ProcessTemplateType">
 <ptid>_PT:90010112.76041948.cc3b67f6.78430032</ptid>
 <name>TestProcess</name>
 <namespaceName>http://TestProcessNamespace</namespaceName>
 <validFromTime>2007-05-10T09:12:58.0Z</validFromTime>
 <displayName xsi:type="bpctyp:LocalizedTextListType">
 <bpctyp:LocalizedText xsi:type="bpctyp:LocalizedTextType">
 <locale>default</locale>
 <text>TestProcess</text>
 </bpctyp:LocalizedText>
 </displayName>
 <applicationName>TestProcessApp</applicationName>
 <state>STATE_STARTED</state>

30

 <executionMode>EXECUTION_MODE_MICROFLOW</executionMode>
 <inputType>wsdl:http://TestProcessNamespace/
 TestProcessInterface#operation1Request</inputType>
 <creationTime>2007-05-10T12:43:39.0Z</creationTime>
 <lastModificationTime>2007-05-
10T12:43:39.0Z</lastModificationTime>
 <autonomy>AUTONOMY_NOT_APPLICABLE</autonomy>
 <autoDelete>true</autoDelete>
 <isCompensationDefined>false</isCompensationDefined>
 <businessRelevant>true</businessRelevant>
 <autoDeletionMode>AUTO_DELETE_YES</autoDeletionMode>
 </bfmtyp:ProcessTemplate>
</bfmsrv:queryProcessTemplatesResponse>

All operations exposed by the generic JMS interface for BFM are executed using the
technical userid "JMSAPIUser" (“Run-As” specification for the message-driven bean), in
other words, the JMS message interface neither requires nor supports authentication of
individual users interacting with BFM.

If a severe exception occurred during processing of a JMS request message, this results in a
runtime failure causing the transaction processing this request message to roll back. The JMS
request message is then redelivered. If the failure already occurred during processing of the
message as part of the SCA Export (e.g., during deserialization of the message), it will be
retried according to the maximum failed deliveries specification of the SCA Export’s receive
destination; after. After the maximum failed deliveries count is reached, the request message
will end up on the system exception destination of the BPC bus. If the failure, however,
occurred during the actual processing of the request by the BFM SCA Component, the
failing request message is handled by the WPS failed event management infrastructure, that
is, may end up in the failed event management database if retries did not resolve the
exceptional situation.

5.6 Queries
BPC uses a relational database system to store runtime information for business processes,
human tasks, and related objects. To retrieve information from the database BPC API
functions can be used. Both, Business Flow Manager as well as Human Task Manager offer
the API functions query() and queryAll() to allow retrieving data. The difference
between query() and queryAll() is that query() returns data for which the currently
logged on user has instance based access rights, that is, they have a work item. For details on
work items please refer to section “Work Items”. The queryAll() API on the other hand
returns all data, independent of instance based authorization. It requires callers of this API to
either be a system administrators or system monitors. Both APIs operate on the published
database views that are part of the BPC programming model.

Database Views
Table 3 shows the process-related database views and 4 shows the task-related database
views.

31

Database view name Information per row
PROCESS_TEMPLATE Process template (definition)
PROCESS_INSTANCE Process instance (based on a template)
PROCESS_ATTRIBUTE Attribute of a process instance
ACTIVITY Activity instance in a process
ACTIVITY_ATTRIBUTE Attribute of an activity instance
ACTIVITY_SERVICE Service for an activity instance in a process

which is waiting for a message or an event
QUERY_PROPERTY Process level variables
AUDIT_LOG_B Audit log event for a process, if enabled

Table 3: Process-Related Database Views

Database view name Information per row
TASK_TEMPL Task template (definition)
TASK_TEMPL_CPROP Custom property for a task template
TASK_TEMPL_DESC Localized description for a task definition
TASK Task instance
TASK_CPROP Custom property for a task instance
TASK_DESC Localized description for a task instance
ESC_TEMPL Escalation template (definition)
ESC_TEMPL_CPROP Custom property for an escalation template
ESC_TEMPL_DESC Localized description for an escalation

definition
ESCALATION Escalation instance
ESCALATION_CPROP Custom property for an escalation instance
ESCALATION_DESC Localized description for an escalation

instance
APPLICATION_COMP Registered application component
TASK_AUDIT_LOG Audit log for tasks, if enabled
WORK_ITEM Information about the assignment of a task

or the authorization to a user

Table 4: Task-Related Database Views

32

Details of the underlying BPC database tables are not published and you must not access
them directly because they are subject to change without notice in future releases.
Furthermore, changing data in the tables directly can lead to unpredictable results and is
therefore not supported.

Native JDBC Queries
Please note that besides using the database views together with the built-in API functions
query() and queryAll(), they can also be used from JDBC applications directly. Use
cases where you might prefer JDBC based access over the built-in functions include the
following:

• You want to run enhanced aggregation functions or functions which are not
supported by the query() and queryAll() API functions

• You want to invoke database system specific functions or call stored procedures
together with BPC table information

Note that the published database views also serve as the basis for the query() and
queryAll() functions.

To access one or more database views in your J2EE application, look up the data source
defined for BPC (define and use a resource reference, if appropriate), obtain a database
connection, and use JDBC statements:

InitialContext ctxt = new InitialContext();
// Use resource ref here, if appropriate
// Note that JNDI lookup name is different when running
// in an ND environment
DataSource ds = (DataSource) ctxt.lookup("jdbc/BPEDB");
Connection con = ds.getConnection();
Statement stmt = con.createStatement();
ResultSet result = stmt.executeStatement(
 "SELECT NAME FROM PROCESS_TEMPLATE");
while(result.next()) {
 System.out.println(result.getString(1));
}
result.close();
stmt.close();
con.close();

Use join predicates if you want to combine information from multiple views. A typical
where clause includes join conditions for ID columns.

The query() and queryAll() API functions provide convenient conversion functions for
binary data types and formats for timestamps and dates. If you access the views using JDBC,
note that timestamp and date information is stored as UTC and that IDs, such as the PIID
column for process instances, are stored in a binary format. In order to get the required byte
array for a JDBC SQL statement, you use the toByteArray() method which is available
for all ID Java objects.

33

Whenever possible, use a less restrictive database transaction isolation level, such as
uncommitted read, to run concurrent SQL statements for the database views, because locks
and lock waits might impact overall system performance and they can also affect process
navigation.

Query Tables
To further enhance query capabilities with version 6.1 of BPC Query Tables have been
introduced. Query Tables exist in two flavors: Custom Tables and Materialized Views.
Support for Custom Tables allows declaring custom-defined tables for their use in BPC API
queries. These custom defined tables are co-located with the BPC tables in the same
database. They usually contain business data needed for inclusion in task lists or business
process lists. In a more advanced use case custom tables may also contain data from business
processes or tasks, allowing to retrieve data from a single table (the custom table) when
preparing task lists, which has performance advantages in high volume scenarios. The
custom table contents are not managed by BPC. For more details on custom tables refer to
chapter 11 in the paper “WebSphere Process Server 6.1: Business Process Choreographer
query() and queryAll() – How to access processes, tasks and work items through the API and
JDBC” [BPCQueries].

Materialized Views is a technique known from database management systems. Materialized
views in BPC allow optimizing the response times for task list queries. In query intensive
scenarios their use can reduce the load on the database server that stores the human
workflows and human tasks, which has a beneficial effect on the overall performance of the
system. Additional details on materialized views can be found in the paper “Performance
Tuning of Human Workflows Using Materialized Views” [MatViews].

5.7 Administrative Interface to Processes
The WebSphere administrative console is a browser-based interface for monitoring,
updating, stopping, and starting a wide variety of applications, services, and resources. You
can use it to perform the following administration tasks:

• Administering the compensation service for a server

• Querying and replaying failed messages

• Refreshing people queries

• Enabling Common Base Events and the audit trail

In addition, the WebSphere administrative (wsadmin) scripting program is a command-line
interface that enables you to run administrative commands in a scripting language and to
submit scripting language programs for execution. It supports the same tasks as the
administrative console. It is intended for production environments and unattended
operations. You can use scripts for the following administration tasks:

• Querying and replaying failed messages

• Refreshing people queries

34

• Deleting audit log entries

• Removing unused people queries

• Deleting process templates and task templates that are no longer valid

5.8 Administrative Interface to Tasks
Tasks can be administered using either the WebSphere administrative console or one of the
administrative scripts. The administrative console and the administrative scripts are both
based on the Human Task Manager JMX MBean interface. The HumanTaskManager
MBean allows you to add and remove state observers, start and stop task templates, manage
application components, refresh cached people queries, and replay messages that have been
put in the hold queue.

5.9 Java Snippet Programming Model
Java snippets in a BPEL process are either activities or expressions that contain inline Java
code. In both cases, the Java code can access objects defined in the enclosing BPEL process,
such as variables and variable properties, partner links, correlation sets, custom properties,
and process state information. In WebSphere Process Server V6.1, these objects are either
data objects or Java objects that represent simple types.

BPEL variables are used in Java snippets in the same way as if they were declared as local
Java variables in the enclosing Java method. The mapping from the XML schema type to the
corresponding Java type is determined by mapping rules defined in [SDO].

In order to improve performance it is possible to disallow write access to variables as shown
in the following example:
// @bpe.readOnlyVariables names="MyVariable"

The names attribute specifies a list of blank-separated variable names. This statement can be
placed everywhere in a Java snippet and all Java comment constructs are available for this
statement (/*...*/, //). Read-only is the default in conditions. In order to change it to allow
also write access use:
// @bpe.readWriteVariables names="..."

The following example shows a Java snippet condition of a BPEL while activity. The inline
Java code accesses a Boolean attribute “response” of a data object that represents the BPEL
CarReservationOutput variable.

<bpel:condition>
 <![CDATA[
 boolean condition = false;
 if(CarReservationOutput != null) {
 condition = CarReservationOutput.getBoolean("response");
 }
 return !condition;
]]>
</bpel:condition>

35

Access to BPEL partner links is provided through the getServiceRefFromPartnerLink
and setServiceRefToPartnerLink generic methods that return and accept service
references for a specified partner link. Service references are wrappers containing endpoint
references (EPRs; see [WS-Addressing]). The Java type of the EPR,
com.ibm.websphere.sca.addressing.EndpointReference, is provided by SCA.
The code in the following Java snippet activity retrieves a service reference which contains
the endpoint reference associated with the myPL partner link.

<bpel:script>
 <![CDATA[
 DataObject mySRef =
 getServiceRefFromPartnerLink("myPL",
 PARTNER_LINK_MY_ROLE);
 ...
]]>
</bpel:script>

Additional generic getter and setter methods are provided for variable properties, correlation
set properties, and custom properties, again, following the type mapping rules in [SDO].
Table 5 summarizes the list of available methods.

Java Method Function

getServiceRefFromPartnerLink

setServiceRefToPartnerLink

Set or retrieve the service endpoint reference
for a partner link

getVariableData

setVariableData

Set or retrieve the value of a variable

getVariableProperty

setVariableProperty

Set or retrieve the value of a process variable
property

getCorrelationSetProperty Retrieve the properties of correlation sets
declared at the process level

getProcessCustomProperty

setProcessCustomProperty

Set or retrieve custom properties at the
process level

getActivityCustomProperty

setActivityCustomProperty

Set or retrieve custom properties at the
activity level

getLinkStatus Access the state of the incoming links (in
join conditions)

getActivityInstance Select an activity instance by its name

getProcessInstance Retrieve the current process as an object in

36

order to access its context

raiseFault Raise a fault in the surrounding process

forceRollback Initiate the compensation of a microflow –
note that this method will not work with
long-running processes

getCurrentFaultAsException Access a Java exception within a fault
handler

Table 5: Methods provided for Java Snippets

5.10 Business Process Choreographer Explorer Components
for JavaServer Faces

Business Process Choreographer Explorer is the generic user interface for managing and
administering process instances and task instances. Because the application is generic, there
is a demand for developing customized clients to support customer-specific business
processes better.

In WebSphere Process Server, V6 the BPC Explorer was designed for "dual use": the first is
the application itself as the process administration client and the other as a framework to
create custom business process clients. For this purpose, BPC Explorer is based on the
JavaServer Faces (JSF) framework, which allows the use and reuse of JSF components. The
BPC Explorer is built on specialized components that application developers can reuse to
build their own customized JSF applications. Figure 5 shows how these components are used
in the BPC Explorer interface.

Figure 5: Business Process Choreographer Explorer Components

The components include:

• List component. This component displays a list of BPC application objects, such as
tasks and processes. It has national language support, and support for custom
converters to display the application objects. You can configure this list with
different queries.

37

• Details component. This component displays the properties of an application object,
for example, a process activity. By default it supports national languages, for
example, through default labels for fields and converters for particular properties.

• Command-bar component. This component displays a set of command buttons that
operate on the selected objects in either the list or details component. Application
developers can add commands to, or remove commands from their applications to
integrate specialized functions that are not part of BPC, for example, the integration
with other back ends.

• Message component. This component displays the input and output business objects
messages for task instances, process instances, and activities. The message
component renders the commonj.sdo.DataObject parts and primitive types,
such as integers and strings in a JSF application. If the message type is primitive, a
label and an input field are rendered. If the message type is a DataObject, the
component traverses through the DataObject and can render the following
elements:

• primitive elements (or leaf elements)

• nested elements

• arrays

• sequences

Application developers can embed these components in their JSF pages and integrate their
own functions to work on the selected objects, for example, add command buttons with
customer-specific functions. The reuse of the BPC Explorer components cuts the
development time, because it leaves all of the integration issues to the components.

5.11 Monitoring and Auditing
Business Process Choreographer can be divided into two subcomponents: the Business Flow
Manager (BFM) that copes with business processes and the Human Task Manager (HTM)
that handles the interaction with human participants. BFM and HTM manage the state
changes of the objects they host. These objects are processes, activities, and variables for
BFM, and tasks and escalations for HTM. Both components provide state observers that
externalize the occurrence of these state changes.

Two state observers are available with WebSphere Process Server:

The audit state observer writes audit trail records persistently to the underlying relational
database (see database views). The records are written under the same transactional
protection as the state changes inside the component. Thus, it is guaranteed that the records
in the audit trail are consistent with the execution steps in the component.

The CEI state observer generates events in the Common Base Event format that are emitted
using the Common Event Infrastructure (CEI).

38

Enabling Monitoring
The externalization of state changes is controlled by a separate monitoring specification in a
.mon file. A monitoring specification can distinguish between the state observers to allow
separate specifications for each of them. By specifying references to the elements in the
BPEL or TEL file (EventPoints), you can define for which elements state changes are to be
externalized. Based on predefined state changes of an element (EventNature), you can also
focus on specific state changes rather than externalizing all of them. For business processes,
certain defaults are defined for elements that result in the externalization of state changes
even if the corresponding EventPoint is not contained in the monitoring specification.

Consuming State Changes
There are two ways to consume externalized state changes depending on the state observer
that is used. If you use the audit state observer to externalize the information, then the state
changes are written to the underlying relational database. To access the records, you can use
SQL select statements to access the audit log view (see Error! Reference source not
found., Error! Reference source not found.).

If you use the CEI state observer, use the CEI API to access event data. There are two modes
offered by CEI to consume events. The query mode is based on XPATH queries. An
application can use the API with SQL-like queries to retrieve events. The subscription mode
of CEI allows multiple subscribers to register with certain events. Thus, the events are
pushed to a subscribing application as soon as they arrive.

6 Business Process Development Tools
WebSphere Integration Developer (WID) is the graphical front end for creating integrated
applications containing business processes and human tasks that run in WebSphere Process
Server. WID is based on Rational Application Developer (RAD), which itself is based on the
WebSphere Studio Workbench, powered by Eclipse technology.

WID extends the WebSphere Studio Workbench with a set of editors and tools, including an
assembly diagram, human task editor, process editor, process debugger, and an integration
test client.

WID uses two special kinds of Eclipse projects to store the artifacts, called “module” and
“library”. Modules can contain all kinds of artifacts and result in an enterprise archive (EAR)
file for installing on the server. Libraries contain reusable artifacts, such as business objects
and interfaces. They end up as utility Java archive (JAR) files in the module EAR file.

6.1 Assembly Diagram
You can use the assembly diagram to build applications by assembling the Service
Component Architecture (SCA) components. The assembly diagram is the graphical front
end for the SCA programming model, and displays and edits the SCDL (.component) files
for each of the components of the module.

39

When you open a module assembly, you can visually compose the integrated application by
adding components and connecting them with wires in the editor view. Both business
processes and human tasks are kinds of these components.

You can either drag and drop existing processes and tasks from the Business Integration
view into the diagram (bottom-up approach), or you can create new components from the
palette, wire them, and then generate skeletons for the corresponding implementations (top-
down approach), which then can be refined using the appropriate editors.

6.2 Business Process Editor
The process editor is a visual tool that lets you model a business process. You can add nodes
to control the sequence of the execution and nodes to invoke services or human tasks and
nodes to receive data. You can specify definitions to handle external events, faults, and
compensation, the so-called handlers. You can also define the data used within the business
process, which can be based on a WSDL message and an XSD schema.

Figure 6 shows the Business Process Editor. On the right side of the editor, you find the
process [see 3.1], the interface and reference partner links [see 3.2], the variables [see 3.3],
the correlation sets and correlation properties [see 3.4]. The palette on the left side of the
editor contains all the activities that you can use within the process [see 3.5], including
human tasks [see 4.1]. To add fault handlers [see 3.6], compensation handlers [see 3.7] and
event handlers [see 3.8] to the process, you use the hover help icons for nodes where you can
(e. g. scopes or invokes) add them.

Both a bottom-up and a top-down approach to modeling the process are possible. You can
start either by creating placeholders (”Empty Action” nodes) in the process and refine them,
or you can use existing Web service definitions (WSDL) in your business process.

40

Figure 6: WebSphere Integration Developer – Business Process Editor

6.3 Human Task Editor
You can use the human task editor to visually compose services that interact with human
participants. These services can be defined either within a business process (inline tasks) or
as human task components (standalone tasks).

You define the following aspects of human tasks in the editor [see 4.1]:

• Who has access rights to these tasks: in the people assignment (originator or
receiver) settings, you can specify a people query for each of the predefined roles,
which defines the set of people that are allowed to access the task and the access
rights that this set of people have.

• How the task is visualized: in the user interface settings, you can define how a task is
presented to the user. For the BPC Explorer, you can define a custom JSP to show
the input and output message of the task. For Lotus Forms based clients, you can
define the form (.xfdl file), for Portal clients a unique identifier of the portlet. You
can use the published client extension point of WID to extend the list of clients with
your own client type.

• What happens when tasks take too long: in the escalation settings, you can define
what happens when the task takes longer than expected.

41

Figure 7: WebSphere Integration Developer – Human Task Editor

6.4 Integration Test Client
You can test your modules and components in WID using the integration test client. It tests
the interface operations in your components, which enables you to determine whether your
components are correctly implemented and whether your references are correctly wired.

You can test a component, such as a business process or human task, a set of wired
components, the complete module, and even a set of connected modules (using imports and
exports). The integration test client is integrated into the assembly diagram. When you start
the test, you are prompted for interface input data for the selected component.

Even if the wiring is not complete, you can test a component by using a manual emulator.
This allows to you test a business process, for example, although the implementation is
incomplete. You can provide the emulator with the expected response data of these
references and continue testing.

To run the integration test client, WebSphere Process Server must be available, either using
the test environment (WTE) in WID or as a standalone server.

42

6.5 Debugging Processes
WID provides a graphical business process debugger which you can use to test and debug
your business processes. You can debug the control flow in the business process, view and
manipulate data, and step into the Java expressions, for example, control links, loops, and
snippets.

To run the debugger, WebSphere Process Server must be available, either using the test
environment (WTE) in WID or as a standalone server.

As with a Java debugger, the process debugger allows you to set breakpoints and to view and
change data. Breakpoints are always set either before an activity (entry breakpoint) or after
an activity (exit breakpoint). The actual values of each variable are shown in a separate view
and can be changed interactively while you are debugging a process.

You can step over an activity, step into Java expressions (which will open the Java debugger
for you) as well as run to the next breakpoint or to the end of the process.

Appendix A SCA Qualifiers
SCA qualifiers can be associated with interfaces, references, and the implementation of a
component. If this component is implemented by a process or a human task then several
constraints apply to the values of these qualifiers, depending on the execution mode of the
process (microflow vs. long-running) or the type of the task (to-do, invocation,
collaboration).

Qualifiers for Business Process Components
Table 6 summarizes the process component qualifier settings. These are initial values if they
are not marked as mandatory.

SCA attribute /
qualifier type

SCA attribute /
qualifier

Long-running
process Microflow

interface attribute preferredInteractionStyle async
(mandatory)

any (one-way), sync
(request-response)

reference attribute multiplicity 1..1
(mandatory) 1..1 (mandatory)

reference qualifier deliverAsyncAt commit
(mandatory) call

interface qualifier joinTransaction false
(mandatory) true (mandatory*)

reference qualifier suspendTransaction false false (*)

implementation
qualifier transaction global

(mandatory) global (mandatory*)

43

SCA attribute /
qualifier type

SCA attribute /
qualifier

Long-running
process Microflow

interface qualifier joinActivitySession n/a true (mandatory**)

reference qualifier suspendActivitySession n/a false (**)

implementation
qualifier activitySession n/a true (mandatory**)

implementation
qualifier securityIdentity (any value) (any value)

interface qualifier securityPermission (any value) (any value)

reference qualifier requestExpiration (any value) (any value)

reference qualifier responseExpiration (any value) (any value)

reference qualifier reliability assured assured

Table 6: Qualifiers for Business Process Components

Notes:

• Activity session qualifiers are only applicable to microflows.

• Global transaction qualifiers (*) and activity session qualifiers (**) are mutually
exclusive.

• If activity sessions are used, then the implementation qualifier transaction must be
specified with value=”local”, localTransactionBoundary=”activitySession”, and
localTransactionResolver=”container”.

Qualifiers for Human Task Components
Task-specific SCA qualifier settings are summarized in Table 7. Again, the values shown are
initial values only if they are not marked as mandatory.

SCA attribute /
qualifier type

SCA attribute /
qualifier

To-do Task Invocation
Task

Collabor
ation
Task

interface
attribute

preferredInteraction
Style

async
(mandatory) n/a n/a

reference
attribute multiplicity n/a 1..1

(mandatory) n/a

reference
qualifier deliverAsyncAt n/a commit

(mandatory) n/a

interface joinTransaction false n/a n/a

44

SCA attribute /
qualifier type

SCA attribute /
qualifier

To-do Task Invocation
Task

Collabor
ation
Task

qualifier (mandatory)

reference
qualifier suspendTransaction n/a false n/a

implementation
qualifier transaction global

(mandatory)
global
(mandatory)

global
(mandator
y)

interface
qualifier joinActivitySession n/a n/a n/a

reference
qualifier

suspendActivitySess
ion n/a n/a n/a

implementation
qualifier activitySession n/a n/a n/a

implementation
qualifier securityIdentity (any value) (any value) (any

value)

interface
qualifier securityPermission (any value) n/a n/a

reference
qualifier requestExpiration n/a (any value) n/a

reference
qualifier responseExpiration n/a (any value) n/a

reference
qualifier reliability n/a assured n/a

Table 7: Qualifiers for Human Task Components

Appendix B References
[BPC in WebSphere] Business process choreography in WebSphere: Combining the power
of BPEL and J2EE, IBM Systems Journal, Volume 43, Number 2, 2004, M. Kloppmann, D.
König, F. Leymann, G. Pfau, and D. Roller, available via
http://www.research.ibm.com/journal/sj/432/kloppmann.html

[BPC Samples] Business Process Management Samples & Tutorials - Version 6.1, available
via http://publib.boulder.ibm.com/bpcsamp/index.html

[BPEL4WS 1.1] Business Process Execution Language for Web Services Version 1.1, BEA
Systems, IBM, Microsoft, SAP AG and Siebel Systems, May 2003, available via
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/

45

[BPEL4People] WS-BPEL Extension for People specification, v1.0, available via
http://www-128.ibm.com/developerworks/webservices/library/specification/ws-bpel4people/

[WS-HumanTask] WS-HumanTask specification, v1.0, available via http://www-
128.ibm.com/developerworks/webservices/library/specification/ws-bpel4people/

[BPEL-SPE] WS-BPEL Extension for Sub-Processes, a joint IBM-SAP whitepaper, October
2005, available via http://www-
128.ibm.com/developerworks/webservices/library/specification/ws-bpelsubproc/

[SDO] Service Data Objects, BEA Systems, IBM, June 2005, available via http://www-
128.ibm.com/developerworks/library/specification/j-commonj-sdowmt/index.html

[SOA PM] Introduction to the IBM SOA programming model, D. Ferguson, M. Stockton,
available via http://www-128.ibm.com/developerworks/webservices/library/ws-soa-
progmodel/index.html

[WPS Info Center] WebSphere Process Server Product Documentation, available via
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.websphere.wps.6
10.doc/welcome_top_wps.htm

[WS-Addressing] Web Services Addressing, W3C Specification, August 2004, available via
http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/

[WS-Addressing 1.0] Web Services Addressing, W3C Recommendation, May 2006,
available via http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/

[WS-BPEL 2.0] Web Service Business Process Execution Language Version 2.0, OASIS
Standard, April 2007, OASIS Technical Committee, available via http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

[WSDL 1.1] Web Services Description Language (WSDL) Version 1.1, W3C Note,
available via http://www.w3.org/TR/2001/NOTE-wsdl-20010315

[XML Schema Part 1] XML Schema Part 1: Structures, W3C Recommendation, October
2004, available via http://www.w3.org/TR/xmlschema-1/

[XML Schema Part 2] XML Schema Part 2: Datatypes, W3C Recommendation, October
2004, available via http://www.w3.org/TR/xmlschema-2/

[XML] XML Specification, W3C Recommendation, February 1998, available via
http://www.w3.org/TR/1998/REC-xml-19980210

[XPATH 1.0] XML Path Language (XPath) Version 1.0, W3C Recommendation, November
1999, available via http://www.w3.org/TR/1999/REC-xpath-19991116

[MatViews] Performance Tuning of Human Workflows Using Materialized Views,
Technical white paper, April 2007, J. Grundler, F. Neumann, G. Pfau, available via
http://www.ibm.com/support/docview.wss?uid=swg27009623

[BPCQueries] WebSphere Process Server 6.1: Business Process Choreographer query() and
queryAll() – How to access processes, tasks and work items through the API and JDBC,
Technical white paper, December 2007, R. Baeurle, F. Neumann, available via http://www-
1.ibm.com/support/docview.wss?uid=swg27010849

46

Appendix C Trademarks
The following terms are trademarks of International Business Machines Corporation in the
United States, other countries, or both: IBM, WebSphere.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

